great

Name:_	 	 	 	
Date:_				

THE EGG DROP CHALLENGE

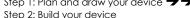
OBJECTIVE Students will investigate and observe gravity, forces and the laws of motion.

QUESTION How can you protect a raw egg when dropped onto a hard surface? How does the size of the egg, the height from which it is dropped and the characteristics of the surface affect the safety of the egg?

THE CHALLENGE Design a device that will protect a raw egg from breaking when dropped from 10 feet onto a hard surface.

THE RULES

- 1) You can only use the materials from the list
- 2) You can only select 6 things from the supply list
- 3) You cannot use glue on the egg itself
- 4) All members of the group must participate to receive credit
- 5) Only your teacher may drop devices loaded with eggs


SUPPLIES Pick 6 of the following materials for your team to use. Mark an X in the box next to your choices

Jyc	on Choices.	
	\square 1 sheet of newspaper	☐ 5 rubber bands
	\square 2 sheets of notebook paper	2 small paper plates
	☐ Tape (2 feet or less)	☐ Plastic spoons/forks/knives (limit 2 total!)
	☐ String (4 - 10 inch pieces)	☐ Glue (for gluing things together only)
	☐ 1 small Styrofoam cup	□ 10 popsicle/stirring sticks or 10 toothpicks
	□ 10 cotton balls	2 feet of toilet paper

PREDICT Which materials will provide the best protection for the egg? My hypothesis is:

PLAN & TEST

Step 1: Plan and draw your device ++++

Step 3: Present your device to the class. Explain your design.

Step 4: Insert your egg and make sure it's ready to be dropped!

Step 5: Wait for your teacher to begin the competition. Be careful with your eaa if you break it before the competition, you will **NOT** get another one!

|--|

KEFLECI				5,4,3,4
1. What happened to you	ır egg when it was c	dropped from the lo	adder?	Tal
				10
2. What would happen if think your egg would surv		gg and device fro	m a tall buildi	ing? Do you
3. What causes some obje	ects to fall faster tha	n others?		
4. When dropped from th				
gallon of milk?	Why? _			
				_
G THANKS				
5. What could you do to i	mprovo vour roculto	novt timo?		
3. What could you do to t	mprove your results	nexi iirie¢		

OPERATION: EGG DROP MISSION: ACCOMPLISHED

Teacher's Guide

Topics: Gravity, Force, Laws of Motion, resistance/drag, aerodynamics

- Ask why some objects fall faster than others.
 - o Discuss downward acceleration, resistance/drag
 - o Example:

- Ask why it takes more force to move a full shopping cart than an empty one (or an empty dresser compared to one that is full of clothes)
 - o Discuss mass and weight of objects, and the forces needed to move objects
 - o Example:

- Ask what would happen to an egg that rolls off a counter.
- Ask students how they can use their knowledge of forces to protect an egg from breaking when dropped from a ladder, onto a hard surface.

Teacher Tip: Set up the ladder outside. Use a tarp or cheap table cloth as a "landing pad". Tape it to the concrete if necessary. Mark an "X" for fun. ©

YouTube Video – Bowling ball/Feather Drop in a Vacuum https://youtu.be/E43-CfukEgs